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Mathematical Background You Will 

Need in the Class 

 Mutli-Variable Calculus  
 What is the gradient of a differentiable function? 

 What is the Hessian of a twice differentiable 
function? 

 Linear Algebra 

 How to compute the distance between two parallel 
hyperplanes in      ?  

 Eigenvalue, positive definite matrix, inner product, 
projection matrix etc. 

 Probability 
 Random variables, probability distributions, conditional 

probability, Bayes’ rule, expected value, variance etc. 

 Statistics 
 Testing hypothesis, confidence interval etc. 

 

 

Rn



Software Packages & Datasets 

• MLC++ 
• Machine learning library in C++ 
• http://www.sgi.com/tech/mlc/ 

• WEKA 
• http://www.cs.waikato.ac.nz/ml/weka/ 

• Stalib 
• Data, software and news from the statistics community 
• http://lib.stat.cmu.edu 

• GALIB 
• MIT GALib in C++ 
• http://lancet.mit.edu/ga 

• Delve 
• Data for Evaluating Learning in Valid Experiments 
• http://www.cs.utoronto.ca/~delve 

• UCI 
• Machine Learning Data Repository UC Irvine 
• http://www.ics.uci.edu/~mlearn/MLRepository.html 

• UCI KDD Archive 
• http://kdd.ics.uci.edu/summary.data.application.html 

http://www.sgi.com/tech/mlc/
http://www.cs.waikato.ac.nz/ml/weka/
http://lib.stat.cmu.edu/
http://lancet.mit.edu/ga
http://www.cs.utoronto.ca/~delve
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://kdd.ics.uci.edu/summary.data.application.html


References in this Lecture 

(and will be very useful in others) 
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• Vladimir N. Vapnik. The Nature of Statistical Learning 
Theory. Springer, Second Edition, 1995. 
 

• Chris Burges. A tutorial on support vector machines 
for pattern recognition. Data Mining and Knowledge 
Discovery, 2 (2):121-167, 1998. 
 

• Ian H. Witten, and Eibe Frank. Data Mining: Practical 
Machine Learning Tools and Techniques.Elsevier, 
Second Edition, 2005 

    WEKA is developed by them. 
 



Major conferences in ML 

 ICML (International Conference on Machine 
Learning) 

 ECML (European Conference on Machine 
Learning) 

 UAI (Uncertainty in Artificial Intelligence) 

 NIPS (Neural Information Processing 
Systems) 

 COLT (Computational Learning Theory) 

 IJCAI (International Joint Conference on 
Artificial Intelligence) 

 … 



 What is Learning All about?  

 Get knowledge of by study, experience, or be 

taught 

 Become aware by information or from 

observation 

 Commit to memory 

  Be informed of or receive instruction 

 



 A Possible Definition of Learning  

 Things learn when they change their behavior 

in a way that makes them perform better in 

the future. 

 

 Have your shoes learned the shape of your 

foot ? 

 

 In learning the purpose is the learner’s, 

whereas in training it is the teacher’s. 

 

 



 Learning & Adaptation 

 Machine Learning: 機器學習? 

 Machine  Automatic 

 Learning  Performance is improved 

 “Modification of a behavioral tendency by expertise.” (Webster 

1984) 

 “A learning machine, broadly defined is any device whose 

actions are influenced by past experiences.” (Nilsson 1965) 

 “Any change in a system that allows it to perform better the 

second time on repetition of the same task or on another task 

drawn from the same population.” (Simon 1983) 

 “An improvement in information processing ability that results 

from information processing activity.” (Tanimoto 1990)  

 



Applications of ML 

 Learning to recognize spoken words 

 SPHINX (Lee 1989) 
 Learning to drive an autonomous vehicle 

 ALVINN (Pomerleau 1989) 
 Learning to pick patterns of terrorist action 

 Learning to classify celestial objects 

 (Fayyad et al 1995) 
 Learning to play chess 

 Learning to play go game (Shih, 1989) 

 Learning to play world-class backgammon (TD-
GAMMON, Tesauro 1992) 

 Designing the morphology and control structure of electro-
mechanical artifacts 

 GOLEM (Lipton, Pollock 2000) 

 IBM Watson Wins Jeopardy, Humans Rally Back (2011) 

 
 



Types of learning problems 

 A rough (and somewhat outdated) classification of 
learning problems: 
 Supervised learning, where we get a set of training 

inputs and outputs 

 classification, regression 
 Unsupervised learning, where we are interested in 

capturing inherent organization in the data 

 clustering, density estimation 
 Semi-supervised learning, in practice, labeled data 

are very limited but a lot of unlabeled data 
 Reinforcement learning, where we only get feedback in 

the form of how well we are doing (not what we should 
be doing) 

 

 



Learning a Class from Examples 

 Suppose we want to learn a class (concept) C 

 example: “sports car” 

 given a collection of cars, have people label them as 

sports car (positive example) or non-sports car 

(negative example) 

 task: find a description that is shared by all of the 

positive examples and none of the negative examples 

 Once we have this definition for C, we can 

 predict – given a new unseen car, predict whether 

or not it is a sports car 

 describe/compress – understand what people 

expect in a car 



Choosing an Input Representation 

 Suppose that of all the features describing cars, we choose price 
and engine power.  Choosing just two features 
 makes things simpler 

 allows us to ignore irrelevant attributes 

 Let 
 x1 represent the price (in USD)  

 x2 represent the engine volume (in cm3) 

 Then each car is represented 

 

 

 and its label y denotes its type 

 

 each example is represented by the pair (x, y) 

 and a training set containing N examples is represented by 

  

 X 

y = { 1  if x is a positive example 

-1  if x is a negative example 

x =
x1

x2

ô õ

= fxt; ytg
N

t=1



Plotting the Training Data 
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suppose that we think that for a car to be a sports car, its price 

and its engine power should be in a certain range: 

(p1 ≤ price ≤ p2) AND (e1≤ engine ≤ e2) 



Concept Class 

x1 

x 2
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suppose that the actual class is C 

task: find h  H that is consistent with X 

false negatives 

p2 p1 

e1 

e2 

h 
false positives 

C 

no training errors 



Choosing a Hypothesis 

 Empirical Error: proportion of training 

instances where predictions of h do not match 

the training set 

 

 

 Each (p1, p2, e1, e2) defines a hypothesis h  H 

 We need to find the best one… 

 

E(hjX) =
N

1P

t=1

N

1(h(xt) 6= yt)
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Most general hypothesis G 

Hypothesis Choice 

x1 

x 2
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Most specific hypothesis S 
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Consistent Hypothesis 
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Any h between S and G 

G and S define the boundaries of the Version Space. 

The set of hypotheses more general than S and more   

specific than G forms the Version Space, the set of consistent hypotheses 



Now what? 

x1 

x 2
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x’? 

How do we make prediction for a new x’? 

x’? 

x’? 

 Using the 

average of S 

and G or just 

rejecting it to 

experts? 



Binary Classification Problem 

Learn a Classifier from the Training Set  

Given a training dataset 

Main goal: Predict the unseen class label for new data  

xi 2 A+, yi = 1 & xi 2 Aà , yi = à 1

S = f(xi; yi)
ì
ìxi 2 Rn; yi 2 fà 1; 1g; i = 1; . . .; mg

Find a function                  by learning from data     f : Rn! R

f(x) > 0) x 2 A+ and f(x) < 0) x 2 Aà

(I) 

(II) Estimate the posteriori probability of label 

Pr(y = 1jx) > Pr(y = à 1jx)) x 2 A+



Naïve Bayes for Classification Problem 
Good for Binary as well as Multi-category 

 Let each attribute be a random variable. What is 
the probability of the class given an instance? 

Pr(Y = yjX1 = x1;X2 = x2; . . .Xn = xn) =?

 Naïve Bayes assumptions: 

 The importance of each attribute is equal 

 All attributes are independent ! 

Pr(Y = yjX1 = x1;X2 = x2; . . .Xn = xn)

=
Pr(X=x)

Pr(Y=y) Q

j=1

n

Pr(Xj = xjjY = y)



The Weather Data Example 

Ian H. Witten & Eibe Frank, Data Mining 

Outlook Temperature Humidity Windy Play (Label) 

Sunny 

Sunny 

Overcast 

Rainy 

Rainy 

Rainy 

Overcast 

Sunny 

Sunny 

Rainy 

Sunny 

Overcast 

Overcast 

Rainy 

Hot 

Hot 

Hot 

Mild 

Cool 

Cool 

Cool 

Mild 

Cool 

Mild 

Mild 

Mild 

Hot 

Mild 

 

High 

High 

High 

High 

Normal 

Normal 

Normal 

High 

Normal 

Normal 

Normal 

High 

Normal 

High 

False 

True 

False 

False 

False 

True 

True 

False 

False 

False 

True 

True 

False 

True 

-1 

-1 

+1 

+1 

+1 

-1 

+1 

-1 

+1 

+1 

+1 

+1 

+1 

-1 



Probabilities for the Weather Data  

Using Frequencies to Approximate Probabilities  

Outlook Temp. Humidity Windy Play 

Play         Yes    No          Yes    No             Yes     No      Yes   No  Yes    No 

Sunny 

Overcast 

Rainy 

2/9 

4/9 

3/9 

3/5 

0/5 

2/5 

Hot 

Mild 

Cool 

 

2/9 

4/9 

3/9 

2/5 

2/5 

1/5 

High 

Normal 

3/9 

6/9 

4/5 

1/5 

T 

F 

3/9 

6/9 

3/5 

2/5 

 

9/14 

 

5/14 

Pr(X1 =
0 rainy0jY = 1) Pr(Y = 1)

Pr(Y = 1jsunny; cool; high; T) /
9

2 á
9

3 á
9

3 á
9

3 á
14

9

Pr(Y = à 1jsunny; cool; high; T) /
5

3 á
5

1 á
5

4 á
5

3 á
14

5

Likelihood of the two classes:  

0/5 

??? 



The Zero-frequency Problem 
     

Q: Roll a dice 8 times. The outcomes are as： 

     2, 5, 6, 2, 1, 5, 3, 6. What is the probability for  
     showing 4. 

 What if an attribute value does NOT occur with a  
    class value? 

 The posterior probability will all be zero! No matter 
    how likely the other attribute values are! 

P(X = 4) =
8+6õ
0+õ ; P(X = 5) =

8+6õ
2+õ

 Laplace estimator will fix “zero-frequency” 
n+aõ
k+õ



Binary Classification Problem 

Learn a Classifier from the Training Set  

Given a training dataset 

Main goal: Predict the unseen class label for new data  

xi 2 A+, yi = 1 & xi 2 Aà , yi = à 1

S = f(xi; yi)
ì
ìxi 2 Rn; yi 2 fà 1; 1g; i = 1; . . .; mg

Find a function                  by learning from data     f : Rn! R

f(x) > 0) x 2 A+ and f(x) < 0) x 2 Aà

(I) 

(II) Estimate the posteriori probability of label 

Pr(y = 1jx) > Pr(y = à 1jx)) x 2 A+



 Binary Classification Problem 
Linearly Separable Case 

A- 

A+ 

x0w+ b = à 1

w
x0w+ b = +1x0w+ b = 0

Malignant 

Benign 



 Linear Learning Machines 

 Simplest case: the decision function is a hyperplane  

in input space. 

 The Perceptron Algorithm: Rosenblatt, 1956 

 An on-line and mistake-driven procedure 

 Update the weight vector and bias when there   

is a misclassified point 

 Converge when problem is linearly separable 



 Basic Notations 

 Inner product: x; w 2 Rn;
ê
x áw

ë
=
P

i=1

n

xiwi

Norm:  jjxjj1 =
P

i=1

n

jxij1-norm: 

2-norm: jjxjj2 = (
P

i=1

n

x2
i
)2
1

1-norm: jjxjj1 = max
1ô iô n

jxij
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 The Perceptron Algorithm 

 Rosenblatt, 1956 

Given a linearly separable training set 

ñ > 0

S and learning rate 

and the initial weight vector, bias: w0 = 0; b0 = 0

R = max
1ô iô `

jjxijj; k = 0:and let 



 The Perceptron Algorithm (Primal Form) 

Repeat: for i = 1 to `

if yi(
ê
wk áxi

ë
+ bk) ô 0 then

wk+1 wk+ ñyix
i

bk+1  bk+ ñyiR
2

k k+ 1

end if

until no mistakes made within the for loop return: 

end for

k; (wk; bk) . What is k ? 



wk+1 wk+ ñyix
i and bk+1  bk+ ñyiR

2

yi
àê
wk+1 áxi

ë
+ bk+1

á
> yi

àê
wk áxi

ë
+ bk

á
?

yi
àê
wk+1 áxi

ë
+ bk+1

á
= yi

àê
(wk + ñyix

i) áxi
ë
+ bk + ñyiR

2
á

= yi
àê
wk áxi

ë
+ bk

á
+ yi

à
ñyi(

ê
xi áxi

ë
+ R2)

á

= yi
àê
wk áxi

ë
+ bk

á
+ ñ

àê
xi áxi

ë
+ R2

á



 The Perceptron Algorithm  
( STOP in Finite Steps ) 

 

Theorem 2.3 (Novikoff) 

Let S be a non-trivial training set, and let 

R = max
1ô iô `

jjxijj:

Suppose that there exists a vector  wopt such that jjwoptjj = 1

and  yi(
ê
wopt áx

i
ë
+ bopt)> í for 16 i6 ` . Then the number  

of mistakes made by the on-line perceptron algorithm on S is 

(
í
2R)2:at most 



 The Perceptron Algorithm (Dual Form) 

w =
P

i=1
`

ë iyix
i

Given a linearly separable training set S ë = 0; ë 2 Rl

b = 0;R = max1ô iô ` jjxijj

and 

Repeat: for i = 1 to `

if yi(
P

j=1

l

ë jyj
ê
xj áxi

ë
+ b)6 0 then

ë i ë i + 1; b b+ yiR
2

end if

until no mistakes made within the for loop return: 

end for

(ë ; b)



What We Got in the Dual Form 

Perceptron Algorithm?  

 The number of updates equals: 
P

i=1

`

ë i = jjë jj1 ô (
í
2R)2

  ë i > 0 implies that the training point (xi; yi) has been  

misclassified in the training process at least once. 

  ë i = 0 implies that removing the training point (xi; yi)

will not affect the final results 

 The training data only appear in the algorithm through the 
     entries of the Gram matrix,             which is defined below: G 2 R`â `

Gij =
ê
xi; xj

ë



The Margin Slack Variable of  (xi; yi)

with respect to  
ê
w; x

ë
+ b = 0

For a fixed value í > 0 called the target margin, we define 

the margin slack variable of training point  (xi; yi) with  

respect to the hyperplane  
ê
w; x

ë
+ b = 0 and  í > 0 as 

øi = max(0; í à yi(
ê
w; xi

ë
+ b)):

 If øi > í, yi(
ê
w; xi

ë
+ b) < 0 then x i is 

misclassified by the hyperplane  
ê
w; x

ë
+ b = 0



xj

x

x

x
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x
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x
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í

í
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Bound of Mistakes of a for loop   

for the Perceptron Algorithm  

Theorem 2.7 (Freund & Schapir) 

Let     be a non-trivial training set with no duplicate examples,  

with  

S
í
íxi
í
í ô R:Let          be any hyperplane with               , and  (w; b)

í
íw
í
í = 1

í > 0 and define  

D =
P

i=1

`

ø2
i

s

; øi = max(0; í à yi(
ê
w áx

ë
+ b)):

Then the number of mistakes in the first execution of the for 

loop of the Perceptron Alg. on     is bounded by   S

à

í

2(R+D)
á2
:



Support Vector Machines 
Maximizing the Margin between Bounding Planes 

x0w+ b = +1

x0w+ b = à 1

A+ 

A- 

w

jjwjj2

2
= Margin



Why We Maximize the Margin? 
(Based on Statistical Learning Theory) 

 The Structural Risk Minimization (SRM): 

  

 The expected risk will be less than or equal to 

empirical risk (training error)+ VC (error) bound 

í
íw
í
í
2
/ VC bound

  min VC bound, min
2
1
í
íw
í
í 2

2
, maxMargin



Learning Multiple Classes 

 K-class 

classification 

 K two-class 

problems 

 (one against all) 

 could introduce 

doubt 

 could have 

unbalance data 



Regression 

 Supervised learning where the output is not a 

classification (e.g. 0/1, true/false, yes/no), but 

the output is a real number. 

 

 X = 

 

fxt; ytg
N

t=1
; yt 2 R



Regression 

 Suppose that the true function is 
 y t = f(x t) +  where  is random noise 

 Suppose that we learn g(x) as our model. The empirical error on 
the training set is 

 

 

 

 Because y t and g(x t) are numeric, it makes sense for L to be the 
distance between them. 

 Common distance measures: 

 mean squared error 

 

 

 

 absolute value of difference 

 etc. 
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Example: Linear Regression 

 Assume g(x) is linear 

 

 

 and we want to minimize the mean squared 

error     

 

 

 We can solve this for the wi that minimizes 

the error 

 





d

i

iidd wxwwxwxwxg
1

0011)( 

2

1

))((
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N

t

t xgy
N






Issues 

 Hypothesis space must be flexible enough to 

represent concept 

 Making sure that the gap of S and G sets do 

not get too large 

 Assumes no noise! 

 inconsistently labeled examples will cause the 

version space to collapse 

 there have been extensions to handle this… 

 



Why We can Learn from Data 

in the Noise-Free Case 

 Assumption: Examples are generated according to 
a probability distribution p(x) and labeled according to 
an unknown function y = f(x) 

 Learning Algorithm:  The learning algorithm is given 
a set of N examples, and it outputs a hypothesis h  
H that is consistent with those examples (correctly 
labels all of them). 

 Goal: h should have a low error rate on new 
examples from the same distribution p(x). 

 

f 
h 

error(h, f) = p[f(x) ≠ h(x)] 



Signal or Noise 

 Noise: unwanted anomaly in the data 

 Another reason we can’t always have a 

perfect hypothesis 

 error in sensor readings for input 

 teacher noise: error in labeling the data 

 additional attributes which we have not taken 

into account. These are called hidden or 

latent because they are unobserved.  

 The Signal and the Noise 

Why So Many Predictions Fail, but Some Don’t? 

                                                   Nate Silver  



When there is noise… 

 There may not have a 

simple boundary 

between the positive 

and negative instances 

 Zero (training) 

misclassification error 

may not be possible 



Probably Approximately Correct Learning 
pac Model    

 Key assumption: 

Training and testing data are generated i.i.d. 

according to a fixed but unknown distribution D

 We call such measure risk functional and denote 

D

it as Derr(h) =
D

f(x; y) 2 X â f1;à 1gj h(x)6=yg

 Evaluate the “quality” of a hypothesis (classifier) 

h 2 H should take the unknown distribution 

error” made by the           ) h 2 H

( i.e. “average error” or “expected into account 



  
Generalization Error of pac Model 

 Let be a set of S = f(x1; y1); . . .; (x
l; yl)g l training 

Dexamples chosen i.i.d. according to 

 Treat the generalization error  err(hS)
D

as a r.v. 

depending on the random selection of  S

 Find a bound of the trail of the distribution of 

in the form 

r.v. 

err(hS)
D

" = "(l;H; î)

  " = "(l;H; î) is a function of l;H and î,where 1 à î

is the confidence level of the error bound which is 
given by learner 



Probably Approximately Correct     

 We assert: 

Pr(f err(hS)
D

> " = "(l;H; î)g) < î

 The error made by the hypothesis 

then the error bound 

hs will be less 

"(l;H; î) that is not depend 

on the unknown distribution D

Pr(f err(hS)
D

ô " = "(l;H; î)g) õ 1 à î

or 



PAC vs. Poll (民意調查) 

 There are 1265 samples were drawn via simple 

random sampling. The error is less than ±2.76％ 

with 95％ confident level. 

Pr(f err(hS)
D

ô " = "(l;H; î)g) õ 1 à î

l = 1265; "(l; H; î) = 0:0276; î= 0:05



Find the Hypothesis with Minimum 
Expected Risk? 

 Let S = f(x1; y1); . . .; (x
l; yl)g ò X â fà 1;1g

the training Dexamples chosen i.i.d. according to 

with the probability density p(x; y)

be 

 The expected misclassification error made by h 2 H
is  

R[h] =

8
;

Xâ fà 1;1g
2
1jh(x) à yjdp(x; y)

 The ideal hypothesis hãopt should has the smallest 

expected risk R[hãopt] ô R[h]; 8h 2 H

Unrealistic !!! 



Empirical Risk Minimization (ERM) 

 Find the hypothesis h
ã
emp with the smallest empirical 

risk Remp[h
ã
emp] ô Remp[h]; 8h 2 H

D p(x; y)and are not needed) ( 

 Replace the expected risk over by an   p(x; y)

average over the training example 

Remp[h] = l
1
P

i=1

l

2
1 jh(xi) à yij The empirical risk: 

 Only focusing on empirical risk will cause overfitting 



When there is noise… 

 There may not have a 

simple boundary 

between the positive 

and negative instances 

 Zero (training) 

misclassification error 

may not be possible 



VC Confidence (Vapnik and Chervonenkis) 

Remp[h] & R[h](The Bound between                             ) 

R[h] ô Remp[h] + l

v(log(2l=v)+1)à log(î=4)
q

 The following inequality will be held with probability 

1 à î

C. J. C. Burges, A tutorial on support vector machines for  

                       pattern recognition, 

Data Mining and Knowledge Discovery 2 (2) (1998), p.121-167 



Capacity (Complexity) of Hypothesis  
Space    :VC-dimension    

   
H

 A given training set is shattered by 

if for every labeling of 

with this labeling 

S H if and only 

S; 9 h 2 H consistent 

 Three (linear independent) points shattered by a 

hyperplanes in R2



  Shattering Points with Hyperplanes 
in         Rn

Theorem: Consider some set of m points in Rn. Choose 

a point as origin. Then the m points can be shattered  

by oriented hyperplanes if and only if the position 

vectors of the rest points are linearly independent. 

Can you always shatter three points with a line in R2? 



Definition of VC-dimension    

H(A Capacity Measure of Hypothesis Space    ) 

 The Vapnik-Chervonenkis dimension, VC(H) , of 

hypothesis space H defined over the input space 

X is the size of the (existent) largest finite subset 

X shattered by H

 If arbitrary large finite set of X can be shattered  

by H, then  VC(H) ñ 1

of 

 Let H = fall hyperplanes in Rng then 

VC(H) = n+ 1



Example I 

 x  R, H = interval on line 

 There exists two points that can be shattered 

 No set of three points can be shattered 

 VC(H) = 2 

 

 

 

 

 

 An example of three points (and a labeling) that cannot 

be shattered 

 

+ –  + 



Example II 

 x R  R, H = Axis parallel rectangles 

 There exist four points that can be shattered 

 No set of five points can be shattered 

 VC(H) = 4 

 Hypotheses consistent 

with all ways of labeling 

three positive; 

 Check that there 

hypothesis for all ways 

of labeling one, two or 

four points positive 



Example III 

 A lookup table has infinite VC dimension! 

 

 

 

 

 A hypothesis space with low VC dimension 

no generalization 

some generalization 

no error in training 

some error in training 



Comments 

 VC dimension is distribution-free; it is independent of 
the probability distribution from which the instances 
are drawn 

 In this sense, it gives us a worse case complexity 
(pessimistic) 
 In real life, the world is smoothly changing, instances 

close by most of the time have the same labels, no 
worry about all possible labelings 

 However, this is still useful for providing bounds, such 
as the sample complexity of a hypothesis class. 

 In general, we will see that there is a connection 
between the VC dimension (which we would like to 
minimize) and the error on the training set (empirical 
risk) 

 



Something about Simple Models 

 Easier to classify a new instance 

 Easier to explain 

 Fewer parameters, means it is easier to train. The 
sample complexity is lower.  

 Lower variance. A small change in the training 
samples will not result in a wildly different hypothesis 

 High bias. A simple model makes strong assumptions 
about the domain; great if we’re right, a disaster if we 
are wrong. 

 optimality?: min (variance + bias) 

 May have better generalization performance, 
especially if there is noise. 

 Occam’s razor: simpler explanations are more 
plausible 



Underfitting and Overfitting 

 Matching the complexity of the hypothesis 
with the complexity of the target function 

 if the hypothesis is less complex than the 
function, we have underfitting.  In this case, if 
we increase the complexity of the model, we 
will reduce both training error and validation 
error. 

 if the hypothesis is too complex, we may have 
overfitting. In this case, the validation error 
may go up even the training error goes down. 
For example, we fit the noise, rather than the 
target function.   



Tradeoffs 

 (Dietterich 2003) 

 complexity/capacity of the hypothesis 

 amount of training data 

 generalization error on new examples 

 

 



Take Home Remarks 

 What is the hardest part of machine learning? 

 selecting attributes (representation) 

 deciding the hypothesis (assumption) space: 
big one or small one, that’s the question! 

 Training is relatively easy 

 DT, NN, SVM, (KNN), … 

 The usual way of learning in real life 

not supervised, not unsupervised, but semi-
supervised, even with some taste of 
reinforcement learning 

 



Take Home Remarks 

 Learning == Search in Hypothesis Space 

 Inductive Learning Hypothesis: Generalization is 
possible. 

 If a machine performs well on most training data AND 
it is not too complex, it will probably do well on similar 
test data. 

 Amazing fact: in many cases this can actually be 
proven. In other words, if our hypothesis space is not 
too complicated/flexible (has a low capacity in some 
formal sense), and if our training set is large enough 
then we can bound the probability of performing 
much worse on test data than on training data. 

 The above statement is carefully formalized in 40 
years of research in the area of learning theory. 

 


